Ribosomal protection proteins and their mechanism of tetracycline resistance.

نویسندگان

  • Sean R Connell
  • Dobryan M Tracz
  • Knud H Nierhaus
  • Diane E Taylor
چکیده

Ribosomal protection represents an important tactic for promoting tetracycline resistance in both gram-positive and -negative species. Tet(O) and Tet(M) are the best studied of these determinants and were originally isolated from Campylobacter jejuni and Streptococcus spp., respectively, although both are widely distributed (10). These are the only two ribosomal protection proteins (RPPs) that have been studied in detail, and therefore, they have been dealt with extensively in this review. It is assumed, however, that the other members of this class of RPPs [Tet(S), Tet(T), Tet(Q), TetB(P), Tet(W), and OtrA] function through similar mechanisms. The distribution of these determinants in the eubacteria has been extensively reviewed by Chopra and Roberts (10) and more recent information can also be found at http://faculty.washington.edu/ marilynr/. Although this review focuses primarily on RPPs, it should be noted that a great variety of tetracycline resistance mechanisms exist (for a review, see reference 10). These determinants include (i) the efflux-based mechanisms found in grampositive and gram-negative bacteria (10), (ii) the enzymatic degradation of tetracyclines found in Bacteroides (46), (iii) the rRNA mutations found in Propionibacterium acnes and Helicobacter pylori (19, 40, 55), and (iv) a host of undetermined mechanisms which bear little resemblance to the well-documented determinants mentioned above (10). In this review, we will survey recent advances in the study of the ribosome, tetracycline, and the RPPs that further the understanding of RPP activity. Earlier work dealing with Tet(M) and Tet(O) as well as the other RPPs has been reviewed previously (51, 52).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetracycline resistance mediated by ribosomal protection.

Resistance to tetracycline may be mediated by one of three different mechanisms: (i) an energy-dependent efflux of tetracycline brought about by an integral membrane protein (20); (ii) ribosomal protection by a soluble protein (5, 23), or (iii) enzymatic inactivation of tetracycline (33), which occurs rarely. This minireview concentrates exclusively on the second mechanism of tetracycline resis...

متن کامل

Mosaic tetracycline resistance genes encoding ribosomal protection proteins

First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this fi...

متن کامل

Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M).

The effects of mutations in host genes on tetracycline resistance mediated by the Tet(O) and Tet(M) ribosomal protection proteins, which originated in Campylobacter spp. and Streptococcus spp., respectively, were investigated by using mutants of Salmonella typhimurium and Escherichia coli. The miaA, miaB, and miaAB double mutants of S. typhimurium specify enzymes for tRNA modification at the ad...

متن کامل

Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance.

Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resi...

متن کامل

Functional, biophysical, and structural bases for antibacterial activity of tigecycline.

Tigecycline is a novel glycylcycline antibiotic that possesses broad-spectrum activity against many clinically relevant species of bacterial pathogens. The mechanism of action of tigecycline was delineated using functional, biophysical, and molecular modeling experiments in this study. Functional assays showed that tigecycline specifically inhibits bacterial protein synthesis with potency 3- an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 47 12  شماره 

صفحات  -

تاریخ انتشار 2003